Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732470

ABSTRACT

The efficacy, targeting ability, and biocompatibility of plant-based nanoparticles can be exploited in fields such as agriculture and medicine. This study highlights the use of plant-based ginger nanoparticles as an effective and promising strategy against cancer and for the treatment and prevention of bacterial infections and related disorders. Ginger is a well-known spice with significant medicinal value due to its phytochemical constituents including gingerols, shogaols, zingerones, and paradols. The silver nanoparticles (AgNPs) derived from ginger extracts could be an important non-toxic and eco-friendly nanomaterial for widespread use in medicine. In this study, AgNPs were biosynthesized using an ethanolic extract of ginger rhizome and their phytochemical, antioxidant, antibacterial, and cytotoxic properties were evaluated. UV-visible spectral analysis confirmed the formation of spherical AgNPs. FTIR analysis revealed that the NPs were associated with various functional biomolecules that were associated with the NPs during stabilization. The particle size and SEM analyses revealed that the AgNPs were in the size range of 80-100 nm, with a polydispersity index (PDI) of 0.510, and a zeta potential of -17.1 mV. The purity and crystalline nature of the AgNPs were confirmed by X-ray diffraction analysis. The simple and repeatable phyto-fabrication method reported here may be used for scaling up for large-scale production of ginger-derived NPs. A phytochemical analysis of the ginger extract revealed the presence of alkaloids, glycosides, flavonoids, phenolics, tannins, saponins, and terpenoids, which can serve as active biocatalysts and natural stabilizers of metallic NPs. The ginger extracts at low concentrations demonstrated promising cytotoxicity against Vero cell lines with a 50% reduction in cell viability at 0.6-6 µg/mL. When evaluated for biological activity, the AgNPs exhibited significant antioxidant and antibacterial activity on several Gram-positive and Gram-negative bacterial species, including Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus. This suggests that the AgNPs may be used against multi-drug-resistant bacteria. Ginger-derived AgNPs have a considerable potential for use in the development of broad-spectrum antimicrobial and anticancer medications, and an optimistic perspective for their use in medicine and pharmaceutical industry.

2.
ACS Nano ; 18(18): 11813-11827, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38657165

ABSTRACT

Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.


Subject(s)
Nanoparticles , Solanum lycopersicum , Sulfur , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Sulfur/metabolism , Sulfur/chemistry , Nanoparticles/chemistry , Nanoparticles/metabolism , Photosynthesis , Surface Properties , Time Factors , Fertilizers , Stearic Acids/metabolism , Stearic Acids/chemistry , Plant Leaves/metabolism
3.
Plants (Basel) ; 13(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38498421

ABSTRACT

The United States Agriculture Improvement Act passed in December of 2018 legalized the growing of Cannabis sativa containing not more than 0.3% total Delta-9 tetrahydrocannabinol (THC) in the country. While Cannabis sativa has been cultivated for hundreds of years, the illegal status of the plant in the United States, and elsewhere, has hindered the development of plant cultivars that meet this legal definition. To assess sampling strategies, and conformance to the THC limit, 14 cultivars of hemp were grown and tested by using gas chromatography with flame ionization detection for total delta-9 THC and total cannabidiol (CBD) during 2020, 2021 and 2022. Each year, samples of fresh plant material were collected from each cultivar weekly, beginning in mid-August and ending in late October, to examine the rate of increase in THC and CBD for different cultivars and select individual plants. The sampling demonstrated that both CBD and THC increase rapidly over a 1-2-week time frame with maximum concentrations (about 16% and 0.6%, respectively) around late September to early October. The testing of individual plants on the same day for select cultivars showed that while the ratio of CBD to THC remains constant (about 20:1 in compliant hemp) during the growing season, the individual plants are highly variable in concentration. Whereas previous studies have shown cultivar-dependent variability in THC production, this study demonstrated a novel plant-to-plant variability in the levels of THC within the same hemp cultivar. Understanding variability within and between hemp cultivars is useful to determine field sampling strategies and to assess the risk of crop embargoes to growers by compliance regulators.

4.
J Agric Food Chem ; 72(13): 6921-6930, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38516700

ABSTRACT

Copper (Cu) is an element widely used as a pesticide for the control of plant diseases. Cu is also known to influence a range of plant secondary metabolisms. However, it is not known whether Cu influences the levels of the major metabolites in hemp (Cannabis sativa L.), tetrahydrocannabinol (THC) and cannabidiol (CBD). This study investigated the impact of Cu on the levels of these cannabinoids in two hemp cultivars, Wife and Merlot, under field conditions, as a function of harvest time (August-September), Cu type (nano, bulk, or ionic), and dose (50, 100, and 500 ppm). In Wife, Cu caused significant temporal increases in THC and CBD production during plant growth, reaching increases of 33% and 31% for THC and 51% and 16.5% for CBD by harvests 3 and 4, respectively. CuO nanoparticles at 50 and 100 ppm significantly increased THC and CBD levels, compared to the control, respectively, by 18% and 27% for THC and 19.9% and 33.6% for CBD. These nanospecific increases coincided with significantly more Cu in the inflorescences (buds) than in the control and bulk CuO treatments. Contrarily, no temporal induction of the cannabinoids by Cu was noticed in Merlot, suggesting a cultivar-specific response to Cu. However, overall, in Merlot, Cu ions, but not particulate Cu, induced THC and CBD levels by 27% and 36%, respectively, compared to the control. Collectively, our findings provide information with contrasting implications in the production of these cannabinoids, where, dependent on the cultivar, metabolite levels may rise above the 0.3% regulatory threshold for THC but to a more profitable level for CBD. Further investigations with a wider range of hemp cultivars, CuO nanoparticle (NP) doses, and harvest times would clarify the significance and broader implications of the findings.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Dronabinol/pharmacology , Copper
5.
Environ Pollut ; 344: 123335, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38211874

ABSTRACT

The presence of per- and poly-fluoroalkyl substances (PFAS) in soils is a global concern as these emerging contaminants are highly resistant to degradation and cause adverse effects on human and environmental health at very low concentrations. Sequestering PFAS in soils using carbon-based materials is a low-cost and effective strategy to minimize pollutant bioavailability and exposure, and may offer potential long-term remediation of PFAS in the environment. This paper provides a comprehensive evaluation of current insights on sequestration of PFAS in soil using carbon-based sorbents. Hydrophobic effects originating from fluorinated carbon (C-F) backbone "tail" and electrostatic interactions deriving from functional groups on the molecules' "head" are the two driving forces governing PFAS sorption. Consequently, varying C-F chain lengths and polar functional groups significantly alter PFAS availability and leachability. Furthermore, matrix parameters such as soil organic matter, inorganic minerals, and pH significantly impact PFAS sequestration by sorbent amendments. Materials such as activated carbon, biochar, carbon nanotubes, and their composites are the primary C-based materials used for PFAS adsorption. Importantly, modifying the carbon structural and surface chemistry is essential for increasing the active sorption sites and for strengthening interactions with PFAS. This review evaluates current literature, identifies knowledge gaps in current remediation technologies and addresses future strategies on the sequestration of PFAS in contaminated soil using sustainable novel C-based sorbents.


Subject(s)
Environmental Restoration and Remediation , Fluorocarbons , Nanotubes, Carbon , Soil Pollutants , Humans , Soil/chemistry , Soil Pollutants/analysis
6.
Plant Physiol Biochem ; 205: 108168, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008005

ABSTRACT

Salinity is a significant abiotic stress that is steadily increasing in intensity globally. Salinity is caused by various factors such as use of poor-quality water for irrigation, poor drainage systems, and increasing spate of drought that concentrates salt solutions in the soil; salinity is responsible for substantial agricultural losses worldwide. Chickpea (Cicer arietinum) is one of the crops most sensitive to salinity stress. Salinity restricts chickpea growth and production by interfering with various physiological and metabolic processes, downregulating genes linked to growth, and upregulating genes encoding intermediates of the tolerance and avoidance mechanisms. Salinity, which also leads to osmotic stress, disturbs the ionic equilibrium of plants. Survival under salinity stress is a primary concern for the plant. Therefore, plants adopt tolerance strategies such as the SOS pathway, antioxidative defense mechanisms, and several other biochemical mechanisms. Simultaneously, affected plants exhibit mechanisms like ion compartmentalization and salt exclusion. In this review, we highlight the impact of salinity in chickpea, strategies employed by the plant to tolerate and avoid salinity, and agricultural strategies for dealing with salinity. With the increasing spate of salinity spurred by natural events and anthropogenic agricultural activities, it is pertinent to explore and exploit the underpinning mechanisms for salinity tolerance to develop mitigation and adaptation strategies in globally important food crops such as chickpea.


Subject(s)
Cicer , Cicer/genetics , Sodium Chloride/metabolism , Stress, Physiological/genetics
7.
Plant Physiol Biochem ; 204: 108123, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37935068

ABSTRACT

Graphene oxide (GO) is widely acknowledged for its exceptional biological and industrial applications. However, its discharge into the environment negatively impacts the ecosystem. This study aimed to investigate the toxicity of GO in Allium cepa root tip cells and the role of extracellular polymeric substances (EPS) in modulating its toxic effects. To evaluate toxicity, various endpoints like cell viability using Evans blue dye, cytotoxicity (mitotic index), genotoxicity (chromosomal aberrations), and oxidative stress assessments (total ROS, superoxide, hydroxyl radical production, and lipid peroxidation) were considered. The results suggest that pristine GO caused a dose-dependent increase in various toxicity parameters, especially the genotoxic effects. Oxidative stress generation by GO is proposed to be the principal mode of action. The EPS-corona formed on GO could potentially counteract the toxic effects, substantially reducing the oxidative stress within the cells.


Subject(s)
Allium , Onions , Extracellular Polymeric Substance Matrix , Soil , Ecosystem , Plant Roots , Oxidative Stress , Mitotic Index , Chromosome Aberrations/chemically induced , DNA Damage
8.
Sci Total Environ ; 905: 167799, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37838047

ABSTRACT

Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20-28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37-38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions.


Subject(s)
Citrullus , Fusarium , Solanum lycopersicum , Biofortification , Plant Diseases/prevention & control
9.
J Agric Food Chem ; 71(44): 16493-16503, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37890448

ABSTRACT

Phosphorus (P) is critical for crop production but has a high nutrient use inefficiency. Tomato was grown in soil amended with five P-sources, used as-is, or embedded within a biodegradable polymer, polyhydroxyalkanoate (PHA). Correlation analysis identified treatments that maintain plant growth, improve bioavailable soil P, and reduce P loss. Three performance classes were identified: (i) micro- and nanohydroxyapatite, which did not increase bioavailable P, plant P-uptake, or change P in runoff/leaching compared to controls; (ii) monocalcium phosphate (MCP), dicalcium phosphate (DCP), calcium pyrophosphate nanoparticles (CAP), and PHA-MCP that increased P-uptake and/or bioavailable P but also increased P loss in runoff/leaching; and (iii) PHA-DCP and PHA-CAP, where increased bioavailable P and plant P-uptake were achieved with minimal P loss in runoff/leaching. In addition to identifying treatments that maintain plant growth, increase bioavailable P, and minimize nutrient loss, correlation plots also revealed that (i) bioavailable P was a good indicator of plant P-uptake; (ii) leached P could be predicted from water solubility; and (iii) P loss through runoff versus leaching showed similar trends. This study highlights that biopolymers can promote plant P-uptake and improve bioavailable soil P, with implications for mitigating the negative environmental impacts of P loss from agricultural systems.


Subject(s)
Phosphorus , Soil , Agriculture , Polymers , Fertilizers
10.
Plants (Basel) ; 12(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36840163

ABSTRACT

Climate change is more likely to have a detrimental effect on the world's productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are wreaking havoc on human health, especially in rural regions of less developed countries. This could be because plants are unable to absorb the nutrients in conventional fertilizers, or these fertilizers have an inappropriate or unbalanced nutrient composition. Chemical fertilizers have been used for centuries and have considerably increased crop yields. However, they also disrupt soil quality and structure, eventually impacting the entire ecosystem. To address the situation, it is necessary to develop advanced materials that can release nutrients to targeted points in the plant-soil environment or appropriate receptors on the leaf in the case of foliar applications. Recently, nanotechnology-based interventions have been strongly encouraged to meet the world's growing food demand and to promote food security in an environmentally friendly manner. Biological approaches for the synthesis of nanoscale agro-materials have become a promising area of research, with a wide range of product types such as nanopesticides, nanoinsecticides, nanoherbicides, nanobactericides/fungicides, bio-conjugated nanocomplexes, and nanoemulsions emerging therefrom. These materials are more sustainable and target-oriented than conventional agrochemicals. In this paper, we reviewed the literature on major abiotic and biotic stresses that are detrimental to plant growth and productivity. We comprehensively discussed the different forms of nanoscale agro-materials and provided an overview of biological approaches in nano-enabled strategies that can efficiently alleviate plant biotic and abiotic stresses while potentially enhancing the nutritional values of plants.

11.
Plants (Basel) ; 11(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36432809

ABSTRACT

Carob (Ceratonia siliqua L.) is a tree crop cultivated extensively in the eastern Mediterranean regions but that has become naturalized in other regions as well. The present study focused on the green synthesis of zinc oxide nanoparticles (ZnONPs) from Carob and their evaluation for antimicrobial activity in bacteria and fungi. The synthesized ZnONPs showed strong antibacterial activity against Staphylococcus aureus ATCC 25 923 (92%). The NPs inhibited the growth of pathogenic yeast strains, including Candida albicans ATCC90028, Candida krusei ATCC6258, and Candida neoformans ATCC14116, by 90%, 91%, and 82%, respectively, compared to the control. Fungal inhibition zones with the ZnONPs were 88.67% and 90%, respectively, larger for Aspergillus flavus 15UA005 and Aspergillus fumigatus ATCC204305, compared to control fungal growth. This study provides novel information relevant for plant-based development of new and potentially antimicrobial ZnONPs based on extracts. In particular, the development and application of phytogenic nanoparticles enhances the biocompatibility of nano-scale materials, thereby allowing to tune effects to prevent adverse outcomes in non-target biological systems.

12.
J Agric Food Chem ; 70(45): 14377-14385, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36331134

ABSTRACT

Little is known about the effect of nano sulfur (NS) under field conditions as a multifunctional agricultural amendment. Pristine and surface coated NS (CS) were amended in soil at 200 mg/kg that was planted with tomato (Solanum lycopersicum) and infested with Fusarium oxysporum f. sp. lycopersici. Foliar exposure of CS (200 µg/mL) was also included. In healthy plants, CS increased tomato marketable yield up to 3.3∼3.4-fold compared to controls. In infested treatments, CS significantly reduced disease severity compared to the other treatments. Foliar and soil treatment with CS increased yield by 107 and 192% over diseased controls, respectively, and significantly increased fruit Ca, Cu, Fe, and Mg contents. A $33/acre investment in CS led to an increase in marketable yield from 4920 to 11,980 kg/acre for healthy plants and from 1135 to 2180 kg/acre for infested plants, demonstrating the significant potential of this nanoenabled strategy to increase food production.


Subject(s)
Fusarium , Nanoparticles , Solanum lycopersicum , Biofortification , Plant Diseases/prevention & control , Soil , Nutrients
13.
ACS Nano ; 16(7): 11204-11217, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35792576

ABSTRACT

Nanoscale sulfur can be a multifunctional agricultural amendment to enhance crop nutrition and suppress disease. Pristine (nS) and stearic acid coated (cS) sulfur nanoparticles were added to soil planted with tomatoes (Solanum lycopersicum) at 200 mg/L soil and infested with Fusarium oxysporum. Bulk sulfur, ionic sulfate, and healthy controls were included. Orthogonal end points were measured in two greenhouse experiments, including agronomic and photosynthetic parameters, disease severity/suppression, mechanistic biochemical and molecular end points including the time-dependent expression of 13 genes related to two S bioassimilation and pathogenesis-response, and metabolomic profiles. Disease reduced the plant biomass by up to 87%, but nS and cS amendment significantly reduced disease as determined by area-under-the-disease-progress curve by 54 and 56%, respectively. An increase in planta S accumulation was evident, with size-specific translocation ratios suggesting different uptake mechanisms. In vivo two-photon microscopy and time-dependent gene expression revealed a nanoscale-specific elemental S bioassimilation pathway within the plant that is separate from traditional sulfate accumulation. These findings correlate well with time-dependent metabolomic profiling, which exhibited increased disease resistance and plant immunity related metabolites only with nanoscale treatment. The linked gene expression and metabolomics data demonstrate a time-sensitive physiological window where nanoscale stimulation of plant immunity will be effective. These findings provide mechanistic understandings of nonmetal nanomaterial-based suppression of plant disease and significantly advance sustainable nanoenabled agricultural strategies to increase food production.


Subject(s)
Solanum lycopersicum , Sulfur/pharmacology , Plant Diseases/prevention & control , Soil/chemistry , Plants/metabolism , Sulfates/metabolism
14.
NanoImpact ; 26: 100406, 2022 04.
Article in English | MEDLINE | ID: mdl-35588596

ABSTRACT

In this study, we investigated the effects of citric acid (CA) coated copper oxide nanoparticles (CuO NPs) and their application method (foliar or soil exposure) on the growth and physiology of soybean (Glycine max). After nanomaterials exposure via foliar or soil application, Cu concentration was elevated in the roots, leaves, stem, pod, and seeds; distribution varied by plant organ and surface coating. Foliar application of CuO NPs at 300 mg/L and CuO-CA NPs at 75 mg/L increased soybean yield by 169.5% and 170.1%, respectively. In contrast, foliar and soil exposure to ionic Cu with all treatments (75 and 300 mg/L) had no impact on yield. Additionally, CuO-CA NPs at 300 mg/L significantly decreased Cu concentration in seeds by 46.7%, compared to control, and by 44.7%, compared to equivalent concentration of CuO NPs. Based on the total Cu concentration, CuO NPs appeared to be more accessible for plant uptake, compared to CuO-CA NPs, inducing a decrease in protein content by 56.3% and inhibiting plant height by 27.9% at 300 mg/kg under soil exposure. The translocation of Cu from leaf to root and from the root to leaf through the xylem was imaged by two-photon microscopy. The findings indicate that citric acid coating reduced CuO NPs toxicity in soybean, demonstrating that surface modification may change the toxic properties of NPs. This research provides direct evidence for the positive effects of CuO-CA NPs on soybean, including accumulation and in planta transfer of the particles, and provides important information when assessing the risk and the benefits of NP use in food safety and security.


Subject(s)
Metal Nanoparticles , Soil , Citric Acid/pharmacology , Copper/pharmacology , Ions , Metal Nanoparticles/toxicity , Glycine max/metabolism
15.
Sci Total Environ ; 731: 139113, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32438083

ABSTRACT

Despite nitrogen (N) being the most important crop nutrient, its use as fertilizer is associated with high losses. Such losses pollute the environment and increase greenhouse gas production and other environmental events associated with high ammonia volatilization and nitrous oxide emission. They also cause soil nitrate leaching and run-off that pollute surface and underground waters, with human health implications. The net outcomes for the plant are reduced N uptake and crop productivity that, together, increase the costs associated with fertilization of agricultural lands and dampen farmers' confidence in the efficacy and profitability of fertilizers. To address these problems, enhanced efficiency fertilizers (EEFs) are continuously being developed to regulate the release of N from fertilizers, allowing for improved uptake and utilization by plants, thereby lowering losses and increasing crop productivity per unit of fertilizer. The EEFs are classified based on whether they are inorganic- bio- or organic-coated; their mode of action on different N forms, including urease activity and nitrification inhibition; and the technologies involved in their development, such as targeted compositing of multiple nutrients and nanotechnology. This review is a critical revisit of the materials and processes utilized to coat or formulate enhanced efficiency N-fertilizers for reducing N losses, including their shortcomings, advances made to address such shortcomings, and effects on mitigating N losses and/or enhancing plant uptake. We provide perspectives that could assist in further improving promising and potentially effective and affordable coating or formulation systems for scalable improvements that allow for reducing the rate of N-fertilizer input in crop production. It is especially critical to develop multi-nutrient fertilizers that provide balanced nutrition to plants and humans, while improving N use efficiency and mitigating N-fertilizer effects on human and environmental health.


Subject(s)
Fertilizers , Nitrogen , Agriculture , Nitrification , Soil
16.
Sci Total Environ ; 722: 137808, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32199367

ABSTRACT

Drought (40% field moisture capacity), organic fertilizer (O-F; 10%), and nano vs. bulk-ZnO particles (1.7 vs. 3.5 mg Zn/kg) were assessed in soil to determine their interactive effects on wheat performance and nutrient acquisition. Drought significantly reduced (6%) chlorophyll levels, whereas nano and bulk-ZnO alleviated some stress, thereby increasing (14-16%) chlorophyll levels, compared to the control. O-F increased (29%) chlorophyll levels and counteracted Zn's effect. Drought delayed (3-days) panicle emergence; O-F, nano and bulk-ZnO each accelerated (5-days) panicle emergence under drought, relative to the control and absence of O-F. Drought reduced (51%) grain yield, while O-F increased (130%) yield under drought. Grain yield was unaffected by Zn treatment under drought but increased (88%) under non-drought condition with bulk-ZnO, relative to the control. Drought lowered (43%) shoot Zn uptake. Compared to the control, nano and bulk-ZnO increased (39 and 23%, respectively) shoot Zn in the absence of O-F, whereas O-F amendment enhanced (94%) shoot Zn. Drought increased (48%) grain Zn concentration; nano and bulk-ZnO increased (29 and 18%, respectively) grain Zn, relative to the control, and O-F increased (85%) grain Zn. Zn recovery efficiency was in the order O-F > nano-ZnO > bulk-ZnO, regardless of the water status. Grain Fe concentration was unaffected by drought, under which O-F significantly reduced grain Fe, and nano-ZnO significantly reduced grain Fe, in the absence of O-F. Nano and bulk-ZnO also significantly reduced grain Fe, with O-F amendment under drought. Drought can have dire consequences for food and nutrition security, with implications for human health. This study demonstrated that drought-induced effects in food crops can be partially or wholly alleviated by ZnO particles and Zn-rich O-F. Understanding the interactions of drought and potential mitigation strategies such as fertilization with Zn-rich organic manure and ZnO can increase options for sustaining food production and quality under adverse conditions.


Subject(s)
Droughts , Fertilizers , Nutrients , Soil , Triticum , Zinc , Zinc Oxide
17.
Front Plant Sci ; 11: 168, 2020.
Article in English | MEDLINE | ID: mdl-32174943

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) hold promise as novel fertilizer nutrients for crops. However, their ultra-small size could hinder large-scale field application due to potential for drift, untimely dissolution or aggregation. In this study, urea was coated with ZnO-NPs (1%) or bulk ZnO (2%) and evaluated in wheat (Triticum aestivum L.) in a greenhouse, under drought (40% field moisture capacity; FMC) and non-drought (80% FMC) conditions, in comparison with urea not coated with ZnO (control), and urea with separate ZnO-NP (1%) or bulk ZnO (2%) amendment. Plants were exposed to ≤ 2.17 mg/kg ZnO-NPs and ≤ 4.34 mg/kg bulk-ZnO, indicating exposure to a higher rate of Zn from the bulk ZnO. ZnO-NPs and bulk-ZnO showed similar urea coating efficiencies of 74-75%. Drought significantly (p ≤ 0.05) increased time to panicle initiation, reduced grain yield, and inhibited uptake of Zn, nitrogen (N), and phosphorus (P). Under drought, ZnO-NPs significantly reduced average time to panicle initiation by 5 days, irrespective of coating, and relative to the control. In contrast, bulk ZnO did not affect time to panicle initiation. Compared to the control, grain yield increased significantly, 51 or 39%, with ZnO-NP-coated or uncoated urea. Yield increases from bulk-ZnO-coated or uncoated urea were insignificant, compared to both the control and the ZnO-NP treatments. Plant uptake of Zn increased by 24 or 8% with coated or uncoated ZnO-NPs; and by 78 or 10% with coated or uncoated bulk-ZnO. Under non-drought conditions, Zn treatment did not significantly reduce panicle initiation time, except with uncoated bulk-ZnO. Relative to the control, ZnO-NPs (irrespective of coating) significantly increased grain yield; and coated ZnO-NPs enhanced Zn uptake significantly. Zn fertilization did not significantly affect N and P uptake, regardless of particle size or coating. Collectively, these findings demonstrate that coating urea with ZnO-NPs enhances plant performance and Zn accumulation, thus potentiating field-scale deployment of nano-scale micronutrients. Notably, lower Zn inputs from ZnO-NPs enhanced crop productivity, comparable to higher inputs from bulk-ZnO. This highlights a key benefit of nanofertilizers: a reduction of nutrient inputs into agriculture without yield penalities.

18.
J Agric Food Chem ; 68(7): 1986-1997, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31986044

ABSTRACT

In this study, the impact of cerium oxide nanoparticles on the nutritional value of tomato (Solanum lycopersicum) fruit grown in soil infested with Fusarium oxysporum f. sp. lycopersici was investigated in a greenhouse pot study. Three-week old seedlings of Bonny Best tomato plants were exposed by foliar and soil routes to nanoparticle CeO2 (NP CeO2) and cerium acetate (CeAc) at 0, 50, and 250 mg/L and transplanted into pots containing a soil mixture infested with the Fusarium wilt pathogen. Fruit biomass, water content, diameter, and nutritional content (lycopene, reducing and total sugar) along with elemental composition, including Ce, were evaluated. Fruit Ce concentration was below the detection limit in all treatments. Foliar exposure to NP CeO2 at 250 increased the fruit dry weight (67%) and lycopene content (9%) in infested plants, compared with the infested untreated control. Foliar exposure to CeAc at 50 mg/L reduced fruit fresh weight (46%) and water content (46%) and increased the fruit lycopene content by 11% via root exposure as compared with the untreated infested control. At 250 mg/L, CeAc increased fruit dry weight (94%), compared with the infested untreated control. Total sugar content decreased in fruits of infested plants exposed via roots to NP CeO2 at 50 mg/kg (63%) and 250 mg/kg (54%), CeAc at 50 mg/kg (46%), and foliarly at 50 mg/L (50%) and 250 mg/L (50%), all compared with the infested untreated control. Plants grown in Fusarium-infested soil had decreased fruit dry weight (42%) and lycopene content (17%) and increased total sugar (60%) and Ca content (140%), when compared with the noninfested untreated control (p ≤ 0.05). Overall, the data suggested minimal negative effects of NP CeO2 on the nutritional value of tomato fruit while simultaneously suppressing Fusarium wilt disease.


Subject(s)
Cerium/pharmacology , Fruit/chemistry , Fungicides, Industrial/pharmacology , Fusarium/physiology , Plant Diseases/microbiology , Solanum lycopersicum/microbiology , Fruit/drug effects , Fruit/growth & development , Fruit/microbiology , Fusarium/drug effects , Solanum lycopersicum/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Nanoparticles/chemistry , Nutritive Value , Soil/chemistry , Soil Microbiology
19.
Sci Total Environ ; 688: 926-934, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31726574

ABSTRACT

Drought is a major environmental event affecting crop productivity and nutritional quality, and potentially, human nutrition. This study evaluated drought effects on performance and nutrient acquisition and distribution in sorghum; and whether ZnO nanoparticles (ZnO-NPs) might alleviate such effects. Soil was amended with ZnO-NPs at 1, 3, and 5 mg Zn/kg, and drought was imposed 4 weeks after seed germination by maintaining the soil at 40% of field moisture capacity. Flag leaf and grain head emergence were delayed 6-17 days by drought, but the delays were reduced to 4-5 days by ZnO-NPs. Drought significantly (p < 0.05) reduced (76%) grain yield; however, ZnO-NP amendment under drought improved grain (22-183%) yield. Drought inhibited grain nitrogen (N) translocation (57%) and total (root, shoot and grain) N acquisition (22%). However, ZnO-NPs (5 mg/kg) improved (84%) grain N translocation relative to the drought control and restored total N levels to the non-drought condition. Shoot uptake of phosphorus (P) was promoted (39%) by drought, while grain P translocation was inhibited (63%); however, ZnO-NPs lowered total P acquisition under drought by 11-23%. Drought impeded shoot uptake (45%), grain translocation (71%) and total acquisition (41%) of potassium (K). ZnO-NP amendment (5 mg/kg) to drought-affected plants improved total K acquisition (16-30%) and grain K (123%), relative to the drought control. Drought lowered (32%) average grain Zn concentration; however, ZnO-NP amendments improved (94%) grain Zn under drought. This study represents the first evidence of mitigation of drought stress in full-term plants solely by exposure to ZnO-NPs in soil. The ability of ZnO-NPs to accelerate plant development, promote yield, fortify edible grains with critically essential nutrients such as Zn, and improve N acquisition under drought stress has strong implications for increasing cropping systems resilience, sustaining human/animal food/feed and nutrition security, and reducing nutrient losses and environmental pollution associated with N-fertilizers.


Subject(s)
Droughts , Fertilizers , Nanoparticles/metabolism , Sorghum/physiology , Zinc Oxide/metabolism , Edible Grain , Nitrogen/metabolism , Phosphorus/metabolism
20.
Sci Total Environ ; 665: 606-616, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30776632

ABSTRACT

Plant response to microelements exposure can be modulated based on particle size. However, studies are lacking on the roles of particle size and specific microelements in mixed exposure systems designed for plant nutrition, rather than toxicology. Here, an addition-omission strategy was used to address particle-size and element-specific effects in soybean exposed to a mixture of nano and bulk scale oxide particles of Zn (2 mg Zn/kg), Cu (1 mg Cu/kg) and B (1 mg B/kg) in soil. Compared to the control, mixtures of oxide particles of both sizes significantly (p < 0.05) promoted grain yield and overall (shoot and grain) Zn accumulation, but suppressed overall P accumulation. However, the mixed nano-oxides, but not the mixed bulk-oxides, specifically stimulated shoot growth (47%), flower formation (63%), shoot biomass (34%), and shoot N (53%) and K (42%) accumulation. Compared by particle size, omission of individual elements from the mixtures evoked significant responses that were nano or bulk-specific, including shoot growth promotion (29%) by bulk-B; inhibition (51%) of flower formation by nano-Cu; stimulation (57%) of flower formation by bulk-B; grain yield suppression (40%) by nano-Zn; B uptake enhancement (34%) by bulk-Cu; P uptake stimulation by nano-Zn (14%) or bulk-B (21%); residual soil N (80%) and Zn (42%) enhancement by nano-Cu; and residual soil Cu enhancement by nano-Zn (72%) and nano-B (62%). Zn was responsible for driving the agronomic (biomass and grain yield) responses in this soil, with concurrent ramifications for environmental management (N and P) and human health (Zn nutrition). Overall, compared to bulk microelements, nanoscale microelements played a greater role in evoking plant responses.


Subject(s)
Crop Production/methods , Glycine max/drug effects , Nanoparticles/administration & dosage , Particulate Matter/administration & dosage , Boron/administration & dosage , Copper/administration & dosage , Metal Nanoparticles/administration & dosage , Micronutrients/administration & dosage , Oxides/administration & dosage , Plant Physiological Phenomena/drug effects , Soil/chemistry , Glycine max/physiology , Zinc/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...